Concept drift detection in business process logs using deep learning

Authors

  • Kahani, Mohsen Departeman Computer Engineering, Ferdowsi University of Mashhad
Abstract:

Process mining provides a bridge between process modeling and analysis on the one hand and data mining on the other hand. Process mining aims at discovering, monitoring, and improving real processes by extracting knowledge from event logs. However, as most business processes change over time (e.g. the effects of new legislation, seasonal effects and etc.), traditional process mining techniques cannot capture such “second-order dynamics” and analyze these processes as if they are in steady-state. Such changes can significantly impact the performance of processes. Hence, for the process management, it is crucial that changes in processes be discovered and analyzed. Process change detection is also known as business process drift detection. All the existing methods for process drift detection are dependent on the size of windows used for detecting changes. Identifying convenient features that characterize the relations between traces or events is another challenge in most methods. In this thesis, we propose an automated and window-independent approach for detecting sudden business process drifts by introducing the notion of trace embedding. Using trace embedding makes it possible to automatically extract all features from the relations between traces. We show that the proposed approach outperforms all the existing methods in respect of its significantly higher accuracy and lower detection delay.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Concept drift detection in event logs using statistical information of variants

In recent years, business process management (BPM) has been highly regarded as an improvement in the efficiency and effectiveness of organizations. Extracting and analyzing information on business processes is an important part of this structure. But these processes are not sustainable over time and may change for a variety of reasons, such as the environment and human resources. These changes ...

full text

Anomaly Detection Algorithms in Business Process Logs

In some domains of application, like software development and health care processes, a normative business process system (e.g. workflow management system) is not appropriate because a flexible support is needed to the participants. On the other hand, while it is important to support flexibility of execution in these domains, security requirements can not be met whether these systems do not offe...

full text

Fast and Accurate Business Process Drift Detection

Business processes are prone to continuous and unexpected changes. Process workers may start executing a process differently in order to adjust to changes in workload, season, guidelines or regulations for example. Early detection of business process changes based on their event logs – also known as business process drift detection – enables analysts to identify and act upon changes that may ot...

full text

Concept Drift Detection Using Online Bayesian Classifier

In data classification the goal is to predict the category of novel instances based on a collection of exemplars whose respective categories are known a priori. The state-of-theart includes various algorithms to solve this problem, including Naive Bayes, Random Forest, Support Vector Machines (SVM), among others. Most of these classifiers consider that the statistical data distribution remains ...

full text

Adaptive Concept Drift Detection

Concept drift is an important problem in the context of machine learning and data mining. It can be described as a change in the fundamental concepts underlying the data, or, in its most basic form, as a significant change in the distribution of the data. From a learning theoretic point of view, one can say that concept drift is a violation of the i.i.d. assumption, which states that each examp...

full text

Concept Detection on Medical Images using Deep Residual Learning Network

Medical images are often used in clinical diagnosis. However, interpreting the insights gained from them is often a time-consuming task even for experts. For this reason, there is a need for methods that can automatically approximate the mapping from medical images to condensed textual descriptions. For identifying the presence of relevant biomedical concepts in medical images for the ImageCLEF...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 17  issue 4

pages  33- 48

publication date 2021-02

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023